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Abstract. This paper studies parametric resonance of coupled micromechanical oscillators under peri-
odically varying nonlinear coupling forces. Different from most of previous related works in which the
periodically varying coupling forces between adjacent oscillators are linearized, our work focuses on new
physical phenomena caused by the periodically varying nonlinear coupling. Harmonic balance method
(HBM) combined with Newton iteration method is employed to find steady-state periodic solutions. Simi-
lar to linearly coupled oscillators studied previously, the present model predicts superharmonic parametric
resonance and the lower-order subharmonic parametric resonance. On the other hand, the present anal-
ysis shows that periodically varying nonlinear coupling considered in the present model does lead to the
appearance of high-order subharmonic parametric resonance when the external excitation frequency is a
multiple or nearly a multiple (�3) of one of the natural frequencies of the oscillator system. This remarkable
new phenomenon does not appear in the linearly coupled micromechanical oscillators studied previously,
and makes the range of exciting resonance frequencies expanded to infinity. In addition, the effect of a
linear damping on parametric resonance is studied in detail, and the conditions for the occurrence of the
high-order subharmonics with a linear damping are discussed.

PACS. 62.30.+d Mechanical and elastic waves; vibrations – 63.22.+m Phonons or vibrational states in
low-dimensional structures and nanoscale materials

1 Introduction

Earlier researches on MEMS-related mechanics have
mainly focused on mechanical behavior of individual com-
ponents (such as a single microcantilever attracted by a
rigid substrate) [1–4]. More recently, considerable atten-
tion has turned to collective mechanical behavior of cou-
pled micromechanical systems. Especially, due to their
relevance to MEMS/NMES [5–8], growing interest has
been attracted to collective nonlinear dynamic behav-
ior of large coupled micromechanical/nanomechanical sys-
tems, such as parametric resonance [9–12], and localized
modes [13–16] of a coupled large array of interacting mi-
crobeams. In particular, Buks and Roukes [9,10] fabri-
cated an array of 67 doubly clamped microbeams, in which
all even-numbered beams are electrically connected to
one electrode while all odd-numbered beams to another
electrode. An electrical voltage applied between the two
electrodes induces attracting electrostatic forces between
side-faces of any two adjacent beams. This coupled mi-
crobeam system was driven parametrically by introduc-
ing a periodically varying ac component to the voltage
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applied between the two electrodes. The response of the
microbeam array showed some interesting nonlinear phe-
nomena. For example, as the exciting frequency of the
periodically varying ac component was swept up, typical
response consisted of a small number of wide peaks, in-
stead of 67 resonance peaks predicted by the linear the-
ory of parametric resonance. Using a perturbation theory,
Lifshitz and Cross [11] studied and explained these non-
linear phenomena based on a model of linearly coupled
array of nonlinear oscillators. More recently, Bromberg et
al. [12] further studied parametric resonance of a large ar-
ray of linearly coupled oscillators using a multiscale per-
turbation analysis.

Although time-independent nonlinear coupling forces
between oscillators (characterized by nonlinear coupling
terms of constant coefficients) has been studied exten-
sively (see e.g. [16–18]), parametric resonance of cou-
pled oscillators under periodically varying nonlinear cou-
pling forces (characterized by nonlinear coupling terms of
periodically-varying coefficients) has received much less
attention [19,20]. For example, in the above-mentioned
works on parametric resonance [9–12], the periodically
varying coupling between any two adjacent microbeams
is linearized and only elastic geometrical nonlinearity
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Fig. 1. Comb-drive microcantilever array and simplified spring
model.

of the microbeams is taken into account. Also, most
of previous works (except very few recent papers such
as [19,20]) on parametric resonance of coupled oscillators,
see e.g. [21–23], are limited to linearized coupling forces.
No doubt, such a linearized coupling is reasonable for, say,
the large array of doubly clamped microbeams studied
in [8–11] where the thickness (0.25 µm) of beams is much
smaller than the gap (4 µm) between adjacent beams and
therefore the elastic nonlinearity of the doubly clamped
microbeams is much more relevant than the nonlinear ef-
fect of coupling. However, in some other cases, such as
comb-drive microcantilever array, shown in Figure 1-1),
with a gap between adjacent beams comparable to or
even smaller than the thickness of microcantilevers [24–
30], elastic nonlinearity of microcantilevers is obviously
much less relevant than the nonlinear dependency of the
periodically varying coupling forces on the change in the
gap between adjacent beams. In particular, in contrast to
the elastic nonlinearity considered in [9–12] which leads to
nonlinear terms of constant coefficients and has a stabiliz-
ing effect, the periodically varying coupling nonlinearity
leads to nonlinear coupling terms of periodically-varying
coefficients and has a destabilizing effect. This suggests
that an oscillator system with periodically varying nonlin-
ear coupling would more likely be parametrically excited
than an oscillator system with elastic nonlinearity. There-
fore, it is of great interest to study the effects of periodi-
cally varying nonlinear coupling on parametric resonance
of coupled micromechanical oscillators.

The present work studies parametric resonance of non-
linearly coupled micromechanical oscillators under period-
ically varying coupling forces. Here, motivated by comb-
drive microcantilevers mentioned above and the fact that
elastic geometrical nonlinearity is much relevant for dou-
bly clamped beams than cantilevers, we neglect the elastic
nonlinearity of oscillators and focus on the role of peri-
odically varying nonlinear coupling between adjacent os-
cillators. As will be shown in the present work, the pe-
riodically varying nonlinear coupling leads to some new
physical phenomena which have not appeared in linearly
coupled oscillators studied previously [9–12] and also have
not been studied in previous related works [19,20]. Actu-
ally, the periodically varying nonlinear coupling studied in

the present paper allows the appearance of high-order sub-
harmonic parametric resonance when the excitation fre-
quency is a multiple or nearly a multiple (�3) of one of
the natural frequencies of the coupled oscillator system,
although the conditions for the appearance of high-order
subharmonic parametric resonance depend on the magni-
tude of linear damping.

2 Micromechanical oscillators with
periodically varying nonlinear coupling

Let us consider a comb-drive microcantilever array, with
the gap d between two side-faces of adjacent beams which
is comparable to the thickness of beams H , as shown in
Figure 1-1). For simplicity, just like [9–12], we shall as-
sume that the first and the last beams are fixed and sta-
tionary. As a result, the complex end-effects, such as those
studied in [29,30] for static pull-in instability of a parallel
array of mutually attracting microbeams, will not appear
in the present analysis. Furthermore, also like [9–12], it is
assumed that each individual beam oscillates in its fun-
damental mode, and the simple spring (oscillator) model
shown in Figure 1-2) will capture essential characteristics
of the comb-drive microcantilever array.

Therefore, let us consider (N + 2) equally spaced os-
cillators of identical mass m and spring constant q, ar-
ranged along a straight line from k = 0 (fixed left end) to
k = N + 1 (fixed right end), as shown in Figure 1-2). Let
the displacement of the kth oscillator be Xk (because the
left and right end oscillators are fixed, X0 = XN+1 = 0).
Assume that any two adjacent oscillators are attracted
to each other through microscale surface forces, such as
electrostatic, van der Waals or Casimir forces, given by
f = M/dn, where M represents the amplitude of the at-
tractive forces which can be periodically varying, d is the
distance between the two adjacent oscillators, and the in-
dex n = 2 (electrostatic force), =3 (van der Waals force),
or =4 (Casimir force) [1–4]. Here, it should be stated that
both van der Waals force and Casimir force share the same
underlying physics, and thus the former is actually the
short distance limit whereas the latter is the long dis-
tance limit of the same physical phenomenon. Thus, in
the presence of a linear damping characterized by a con-
stant viscous coefficient c, dynamics of the N mutually
attracting oscillators is governed by

d2xk

dt2
+

c

m

dxk

dt
+ ω2

0xk − M

mdn+1
0

[
1

(1 + xk+1 − xk)n

− 1
(1 + xk − xk−1)n

]
= 0, (k = 1, 2, . . ., N) (1)

where xk = Xk/d0 is dimensionless displacement of the
kth spring, d0 is the initial distance between adjacent
springs,t is the time, and ω0 =

√
q/m is the frequency

of a single isolated spring in the absence of the spring-
spring coupling with any other springs. Apparently, the
equilibrium position defined by zero displacements xk (or
Xk) = 0 (k = 1, 2,. . . , N) is a solution of (1), because
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two attraction forces from two opposite sides are always
equal and opposite for each of all intermediate oscillators
(k = 1, 2,. . . , N). However, non-zero solutions of (1) be-
come possible when the coupling attractive forces char-
acterized by M(t) meet some conditions. In particular,
appearance of any stable steady-state non-zero periodic
solution in the neighborhood of the equilibrium position
(of zero-displacements), under periodically varying M(t)
of a certain frequency, defines parametric resonance of the
coupled oscillator system.

Natural frequencies of the coupled array of oscillators
are determined by infinitesimal linear vibration of the cou-
pled oscillators in the neighborhood of their equilibrium
position xk (orXk) = 0 (k = 1, 2,. . . ,N). For infinitesimal
displacements around the equilibrium position, linearized
equation of (1) gives

d2xk

dt2
+

c

m

dxk

dt
+ ω2

0xk − nQω2
0(2xk

− xk−1 − xk+1) = 0, (k = 1, 2, . . ., N) (2)

where Q = M
qdn+1

0
is the periodically varying loading pa-

rameter, defined based on the initial distance d0. Thus,
when M is a reasonably small positive constant, there ex-
ist N distinct natural frequencies of the linearized sys-
tem (2) in the absence of the damping (c = 0), given by
ωi =

√
1 − 4nQ sin2 iπ

2(N+1)ω0 (i = 1, 2,. . . , N) [10]. For
sufficiently large N , the highest natural frequency, ωN ,
approaches ω0. On the other hand, the lowest natural fre-
quency, ω1, reduces to zero when M increases gradually
so that (nQ) reaches 1/4, which indicates the existence of
stationary non-zero solution and static instability of the
coupled oscillator array, as studied in [29,30]. For example,
for a large coupled oscillator array with two end oscilla-
tors fixed, such a static instability occurs when Q = 1/8
for n = 2, or Q = 1/12 for n = 3, or Q = 1/16 for n = 4.

Since comb-drive microcantilever arrays are usually
electrostatically controlled [6–30], in what follows, we shall
focus on the behavior of the coupled oscillators controlled
by electrostatic forces (n = 2). Thus, when only a con-
stant dc voltage Vdc is applied on the coupled oscillators,
the N distinct natural frequencies of the linearized system
are given by

ωi =

√
1 − 8Q sin2 iπ

2(N + 1)
ω0, (i = 1, 2, . . ., N) (3)

where Q = ε0SV 2
dc

2d3
0q

, ε0 is the permittivity of the medium
between the beams, and S is the side-face area of adja-
cent beams exposed to the electrostatic filed. On the other
hand, when a periodically varying ac voltage is added to
the dc voltage, V = Vdc + Vac cos(Ωt), where Vac and Ω
are the amplitude and exciting frequency of the ac volt-
age, the amplitude of the nonlinear electrostatic force M
will be periodically varying and given by

M=
ε0SV

2

2
=
ε0SV

2
dc

2

(
1+2

Vac

Vdc
cos(Ωt)+

(
Vac

Vdc

)2

cos2(Ωt)
)
.

(4)

Substituting (4) into (1), we obtain a dimensionless equa-
tion

d2xk

dτ2
+

c

mω0

dxk

dτ
+ xk

−Q

[
1

(1 + xk+1 − xk)2
− 1

(1 + xk − xk−1)2

]

×
[
1 + 2

Vac

Vdc
cos

(
Ω

ω0
τ

)
+

(
Vac

Vdc

)2

cos2
(
Ω

ω0
τ

)]
= 0

(5)

where τ = ω0t.
When the periodically varying coupling terms in (5)

are linearized, the theory of classic Mathieu equation pre-
dicts that parametric resonance occurs when the frequency
of the parametric excitation Ω is close to 2ωi/j, where
ωi is any one of the N distinct natural frequencies de-
fined in (3), and j is a positive integer [31,32]. In this
case, because ωi < ω0 (i = 1, 2,. . . , N), all resonance fre-
quencies for parametric excitation will be bounded from
above by 2ω0, and then there will be no parametric res-
onance when the excitation frequency Ω is much higher
than 2ω0 when the coupling between adjacent oscillators
is linearized [9–12].

In the present paper, we study the effect of periodi-
cally varying nonlinear coupling on parametric resonance,
with particular interest in whether high-order subhar-
monic parametric resonance exists when the excitation
frequency is close to a multiple (�3) of one of the nat-
ural frequencies ωi (i = 1, 2,. . . , N). To this end, we shall
seek, in the neighborhood of the equilibrium position, the
lowest-order non-zero periodic solution of (5) with Ω/λ as
the excited frequency, given by

xk = ak cos
(
Ω

λω0
τ

)
+ bk sin

(
Ω

λω0
τ

)
(6)

where λ is an integer or the inverse of an integer, and ak

and bk are some undetermined constants (k = 1, 2,. . . ,
N). Using the harmonic balance method [32,33], we sub-
stitute (6) into (5), and then multiplying equation (5) by
the functions cos( Ω

λω0
τ) and sin( Ω

λω0
τ) (k = 1, 2,. . . , N),

respectively, and integrating the resulting equation over
[0, 2π] lead to 2N nonlinear equations. The Newton iter-
ation method is then employed to solve these equations
for 2N unknown coefficients ak and bk (k = 1, 2,. . . ,
N). In particular, the Newton iteration method with vari-
ous initial values allows finding all possible solutions, and
stability analysis of steady-state solutions (see Appendix)
makes it possible to distinguish stable solutions from un-
stable ones. A non-zero stable solution of these nonlinear
equations defines a parametric resonance characterized by
a stable steady-state periodic solution of the form (6).

3 Parametric resonance without damping

In order to clearly demonstrate essential features of para-
metric resonance of nonlinearly coupled oscillators, let us
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consider only three oscillators in which the middle one is
nonlinearly coupled with two fixed end oscillators (thus
N = 1 and X0 = X2 = 0, see Figure 1-2)). Actually, our
results showed that a coupled system of more than three
oscillators (with N >1) exhibits essentially similar phe-
nomena as the present simple system with N = 1 (the
details will be reported elsewhere later). In this section,
we first neglect the damping effect and consider c = 0.
The effect of a linear damping will be studied in next sec-
tion. In both sections, we take Q = 1/20 and Vac

Vdc
= 0.1 in

equation (5). It then follows from (3) that ω1 = 0.8944ω0.

3.1 Parametric resonance with λ � 2

For the sake of comparison to previous related works with
λ � 2 for linearly coupled oscillators [9–12], we first study
the parametric resonance with λ � 2. Based on the har-
monic balance method, as described above, we shall seek
a periodic solution of the form (6) by solving 2 nonlin-
ear equations for the two unknowns a1 and b1. The ex-
istence of a non-zero solution a1 and b1 defines a pe-
riodic solution of the intermediate oscillator nonlinearly
coupled with two fixed end oscillators, and the periodic
solution can be expressed as x1 = Am cos( Ω

λω0τ − ψ) (see
Eq. (6)), where the amplitude Am =

√
a2
1 + b21, and the

phase ψ = arctg(b1/a1).
Figure 2 shows the relationship between the amplitude

of the excited resonance and the ac frequency Ω/ω0 for
parametric resonance defined by λ = 0.5, 1 or 2. In this
figure and Figures 3–6, the dash lines represent unsta-
ble steady-state solutions, while the solid lines represent
stable steady-state solutions. Detailed stability analysis
of steady-state solutions is explained in Appendix. For
example, steady-state solutions with g(A0

m, ψ
0) > 0 are

stable, while those with g(A0
m, ψ

0) < 0 are unstable (see
Eq. (A-15)). In particular, our results show that for λ = 8
and c = 0, the solutions with cos(8ψ0) = −1 are stable,
while the solutions with cos(8ψ0) = 1 are unstable. Sta-
bility of the steady-state solutions with λ = 0.5, 1, 2, 3, 4
can be analyzed in a similar way (see Appendix).

Here, it should be stated that any point on the solid or
dashed line would represent more than one solution which
have the same amplitude but with different phases. In Fig-
ure 2-1), curves a) and b) intersect with the x-coordinate
axis at point A (Ω/ω0 = 0.4451) and B (Ω/ω0 = 0.4489),
respectively, and point C is the linear resonance frequency
of 2ω1/j with j = 4, where ω1 = 0.8944ω0. In Figure 2-2),
the coordinate of point A or B is Ω/ω0 = 0.8936 or 0.8942,
respectively, and point C is the linear resonance frequency
of 2ω1/j (=0.8944ω0 with j = 2). In Figure 2-3), the
coordinate of point A or B is Ω/ω0 = 1.7654 or 1.81,
and point C is the linear resonance frequency of 2ω1/j
(=1.7888ω0 with j = 1). In particular, our results show
that points A and B will approach point C when Vac/Vdc

approaches zero.
Similar to the responses of a parametrically excited

Duffing oscillator [32] and electrostatical microelectrome-
chanical oscillators with cubic nonlinear coupling [19,20],

the response of the present system (5) also exhibits hys-
teresis phenomenon. For example, it is seen from Figure 2
that when the ac frequency Ω/ω0 is higher than the coor-
dinate of point B (say, 1.81 for λ = 2), only the (stable)
trivial solution exists. When the ac frequency is between
the coordinates of points A and B (say, 1.7654 � Ω/ω0 �
1.81 for λ = 2), the trivial solution is unstable, and the
only stable solution is the periodic solution shown by the
solid line in Figure 2. When the ac frequency Ω/ω0 is less
than the coordinate of point A (say, 1.7654 for λ = 2), two
stable solutions exist, including the trivial solution and a
stable steady-state solution shown by the solid line in Fig-
ure 2. Thus, when the ac frequency Ω/ω0 decreased grad-
ually from a bigger value (for example, more than 1.81),
the amplitude of parametric resonance will increase along
the solid line in Fig. 2-3). On the other hand, when the
ac frequency increased gradually from a smaller value (for
example, less than 1.7654), there will be no parametric res-
onance until Ω/ω0 reaches point A (=1.7654) at which the
response will jump abruptly to the solid line in Fig. 2-3)
and gradually decrease to zero along this solid line.

All of these results on the stable and unstable steady-
state solutions shown in Figure 2 for parametric resonance
with λ � 2 are qualitatively similar to those obtained
in [9–12] based on linearly coupled oscillators and those
obtained in [19,20] based on oscillators with a cubic non-
linear coupling, around the linear resonance frequencies
Ω = 2ω1/j ( j = 1, 2 or 4).

3.2 Parametric resonance with λ � 3

Different from the previous works [9–12] and [19,20] which
only focused on parametric resonance with λ � 2, the
present work is particularly interested in existence of high-
order subharmonic parametric resonance with λ � 3,
which is equivalent to a resonance frequency around Ω =
2ω1/j with 0 < j < 1.

Figure 3 shows the relationships between the ampli-
tude of the excited resonance and the ac frequency for
λ = 3, 4 or 8. In Figure 3-1), the solid line represents
a stable steady-state solution, while an unstable steady-
state solution also exists and is showed in Figure 3-1) by a
dashed line which is almost coincident with the solid line
and thus is covered by the solid line. Here, it should be
stated that any point on the solid or dashed line would rep-
resent more than one solution which have the same ampli-
tude but with different phases. The solution curves inter-
sect with the x-coordinate axis at point A(Ω/ω0 = 2.6816)
which approaches point C when Vac/Vdc approaches zero,
where the coordinate of point C is λω1/ω0 = 2.6832
with λ = 3 (equivalent to Ω = 2ω1/j with j = 2/3).
In Figure 3-2), the two solution curves intersect with the
x-coordinate axis at point A (Ω/ω0 = 3.5756) which ap-
proaches point C when Vac/Vdc approaches zero, where
the coordinate of point C is λω1/ω0 = 3.5776 with λ = 4
(equivalent to Ω = 2ω1/j with j = 1/2). Similar to Fig-
ure 3-1) for λ = 3, the dashed line in Figure 3-3) for the
unstable solution with λ = 8 is almost coincident with the
solid line and thus is covered by the solid one. The solution
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Fig. 2. Parametric resonance for λ � 2 without the viscous effect when Q =
ε0SV 2

dc

2d3
0q

= 1/20 and Vac
Vdc

= 0.1 (solid line: stable

steady-state solutions; dashed line: unstable steady-state solutions).

Fig. 3. Parametric resonance for λ � 3 without the viscous effect when Q =
ε0SV 2

dc

2d3
0q

= 1/20 and Vac
Vdc

= 0.1 (solid line: stable

steady-state solutions; dashed line: unstable steady-state solutions).

curves intersect the x-axis at point A (Ω/ω0 = 7.1512)
which approaches point C when Vac/Vdc approaches zero,
where the coordinate of C = λω1/ω0 = 7.1552 with λ = 8
(equivalent to Ω = 2ω1/j with j = 1/4).

It is seen from Figure 3 that near point A, small-
amplitude stable steady-state periodic solutions exist for
λ = 3, 4 or 8, in the neighborhood of the equilibrium
position of the oscillators. Therefore, infinitesimal dis-
turbances could lead to dynamic instability of the equi-
librium position and the appearance of high-order sub-
harmonic parametric resonance when the ac frequency is

close to point A at which Ω = 2.6816ω0 for λ = 3, or
Ω = 3.5756ω0 for λ = 4, or Ω = 7.1512ω0 for λ = 8.
These values of the resonance frequency Ω are very close
to λω1, with a very small gap less than 0.1% for λ = 3,
4 or 8. Furthermore, our results (the details are omit-
ted here) showed that similar high-order subharmonic
parametric resonance also occurs for λ larger than 8.
Therefore, in contrast to previous related works [9–12,
19,20] which showed the existence of lower-order sub-
harmonic parametric resonance (λ � 2), the present
work shows that periodically varying nonlinear coupling in
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the nonlinearly coupled micromechanical oscillators does
cause high-order subharmonic parametric resonance when
the ac frequency is close to a multiple (say, 3, 4, 8 or more)
of one of its natural frequencies.

In connection with this, we noticed that similar high-
order subharmonic parametric resonance of specific order
has been reported previously for a few damping-free non-
linear oscillators with periodically varying nonlinear pow-
ers of specific order [34,35]. These previous works (such
as [34,35]) indicated that if the periodically varying non-
linear term of the governing equation is a power of or-
der (λ–1), then subharmonic parametric resonance of or-
der λ will exist while subharmonic parametric resonance
of order higher than λ will not exist. Since the present
model includes a general periodically varying nonlinear
term (see the fourth term on LHS of (5)) whose Taylor
series contains all orders of powers, the system studied
in the present paper is expected to exhibit subharmonic
resonances of all orders (such as λ = 3, 4, 8, or more),
as shown by the above numerical results. In fact, our nu-
merical results have confirmed that if the fourth term on
LHS of (5) is expanded only up to the 7th power, sub-
harmonic parametric resonance of order 8 will exist while
subharmonic parametric resonance of order 9 will not ex-
ist. On the other hand, if the fourth term on LHS of (5)
is expanded up to the 9th power, subharmonic parametric
resonance of order 9 will exist. Therefore, our results are
well consistent with the earlier works [34,35]. In particu-
lar, as stated in [34], theoretical results of [34] have been
well confirmed experimentally.

4 Effects of the damping on parametric
resonance

Next, let us study the effect of a linear damping on para-
metric resonance of the coupled micromechanical oscilla-
tors under periodically varying coupling forces. The pa-
rameters used in this section are Q = 1/20 and Vac/Vdc =
0.1 (same as those in Sect. 3), but with a non-zero viscous
coefficient c > 0.

4.1 Parametric resonance with λ � 2

Firstly, let us consider the parametric resonance with
λ � 2, with increasing viscous coefficient c. It is found that
for λ � 2, when the viscous coefficient is sufficiently small,
there are still two different solution curves (one represents
the stable steady-state solution, and the other represents
the unstable one) which meet the x-coordinate axis at
two distinct points, and these two solution curves change
smoothly with increasing viscous coefficient. However, af-
ter the viscous coefficient reaches a certain critical value,
the two solution curves will originate from some points
above the x-axis and no longer meet the x-axis. Hence, the
critical viscous coefficient can be defined as the smallest
viscous coefficient beyond which no more periodic solution
with vanishingly small amplitude exists. The critical vis-
cous coefficient defined in this way for λ = 0.5, 1, 2, 3, 4,

Fig. 4. Parametric resonance for λ = 2 with the viscous
coefficient less than (or equal to) the critical value when

Q =
ε0SV 2

dc

2d3
0q

= 1/20 and Vac
Vdc

= 0.1, where the critical value

is c
mω0

= 22.2 × 10−3 for λ = 2 (solid line: stable steady-state

solutions; dashed line: unstable steady-state solutions).

or 8 is shown in Table 1. In particular, the critical viscous
coefficient for λ � 3 is always zero, which could mean
that high-order subharmonic parametric resonance with
vanishing small amplitude will not exist in the presence of
an even small linear damping.

For λ = 2, the relationship between the amplitude of
the excited periodic solution and the ac frequency is shown
in Figure 4 when the viscous coefficient is less than (or
equal to) the critical value (22.2 × 10−3). In Figure 4,
curve (1) represents the steady-state solutions without the
damping effect (shown in Fig. 2-3)), and curve (2) or (3)
represents the solutions with the viscous coefficient c

mω0
=

12×10−3, or 22.2×10−3 (the critical value). It is seen from
Figure 4 that all stable solution curves originate from some
points on the x-axis with zero-amplitude. Thus, when the
viscous coefficient is less than (or equal to) the critical
value, small-amplitude non-zero stable periodic solutions
exist in the neighborhood of the equilibrium position, and
infinitesimal disturbances can cause dynamic instability of
the equilibrium position and parametric resonance of the
coupled oscillators.

When the viscous coefficient is bigger than the criti-
cal value, the relationship between the amplitude of the
excited periodic solution and the ac frequency for λ = 2
is shown in Figure 5. Different than Figure 4, the two so-
lution curves shown in Figure 5 originate from a point A
which is above the x-axis and associated with non-zero
amplitude. Since the stable solution curves do not inter-
sect with the x-coordinate axis, instability of the equi-
librium position will lead to a periodic oscillation of the
oscillators with small but finite amplitude. If the smallest
amplitude, which is determined by point A in Figure 5,
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Fig. 5. Parametric resonance for λ = 2 with the viscous coefficient more than the critical value when Q =
ε0SV 2

dc

2d3
0q

= 1/20 and
Vac
Vdc

= 0.1, where the critical value is c
mω0

= 22.2×10−3 for λ = 2 (solid line: stable steady-state solutions; dashed line: unstable

steady-state solutions).

Fig. 6. Parametric resonance for λ = 8 with the viscous coefficient when Q =
ε0SV 2

dc

2d3
0q

= 1/20 and Vac
Vdc

= 0.1.

is defined as alowest, then the lowest amplitude alowest

increases with increasing viscous coefficient. For exam-
ple, alowest is 0.159d0 when the viscous coefficient c

mω0

is 23×10−3, while alowest increases to 0.244d0 or 0.383d0

when the viscous coefficient increases to 24 × 10−3 or
27×10−3. Our results show that the responses for λ = 0.5
and 1 are essentially similar to that shown in Figure 4 or 5
for λ = 2, and therefore the details for λ = 0.5 and 1 are
not shown here.

In summary, for λ � 2, there exists a positive criti-
cal value for the viscous coefficient, as shown in Table 1.
When the viscous coefficient is less than (or equal to) the
critical value, stable periodic solutions with vanishingly
small amplitude exist and parametric resonance exhibit
similar phenomena as those discussed in Section 3 in the
absence of damping. However, when the viscous coefficient
is larger than the critical value, the amplitudes of possible
stable periodic solutions are bounded from below by the
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Table 1. Critical viscous coefficient c
mω0

when Q =
ε0SV 2

dc

2d3
0q

= 1/20 and Vac
Vdc

= 0.1.

λ 0.5 1 2 3 4 8

Critical viscous coefficient c
mω0

7.6 × 10−3 0.56 × 10−3 22.2 × 10−3 0 0 0

smallest amplitude alowest which increases with increas-
ing viscous coefficient. In this case, periodic solutions with
amplitude smaller than alowest will not exist. In particular,
because the critical viscous coefficient forλ � 3 is always
zero (see Tab. 1), high-order subharmonic parametric res-
onance with vanishing small amplitude will not exist in
the presence of any small linear damping.

Here, it should be stated that the damping effect on
parametric resonance is a complicated issue. On one hand,
Rhoads et al. [19,20] stated that the response is largely
unaffected by damping and therefore these authors have
limited their attention to linear damping only. On the
other hand, Lifshitz and Cross [11] indicated that non-
linear damping is important for the amplitudes of steady-
state solutions. In the present study, we only considered a
linear damping, and how does a nonlinear damping affect
parametric resonance of nonlinearly coupled oscillators re-
quests further research.

4.2 Parametric resonance with λ � 3

Let us now consider the damping effect on parametric
resonance with λ � 3. It is found that the critical vis-
cous coefficient for λ � 3 is constantly zero, as shown in
Table 1, and there exists no periodic solution with van-
ishingly small amplitude for λ � 3 when the viscous co-
efficient is non-zero. In other words, for non-zero viscous
coefficient, the amplitudes of all possible periodic solutions
with λ � 3 are bounded from below by a positive number.

Figure 6 shows the relationship between the amplitude
of the excited stable periodic solution and the ac frequency
with non-zero viscous coefficient for λ = 8. It is seen from
Figure 6 that the lowest amplitude alowest in the solu-
tion curve increases as the viscous coefficient increases.
For example, the lowest amplitude alowest is 0.156d0 when
the viscous coefficient c

mω0
is 2 × 10−8, while alowest in-

creases to 0.228d0 or 0.334d0 when the viscous coefficient
increases to 2×10−7 or 2×10−6. Our results show that the
responses for λ = 3 and 4 are essentially similar to that
shown in Figure 6 for λ = 8, and therefore the details for
λ = 3 and 4 are omitted here.

These results are consistent with the expected stabi-
lizing effects of damping on parametric resonance. In fact,
in the presence of a non-zero damping, it is expected that
high-order subharmonic parametric resonance could occur
only when the disturbances are large enough to bring the
oscillator system to one stable steady-state state which is
at a finite distance from the equilibrium position. Thus,
roughly speaking, there are two conditions for the occur-
rence of high-order subharmonic parametric resonances
with smaller disturbance. The first one is that the vis-
cous coefficient should be reasonably lower, and the second

Fig. 7. Domain of Q and Vac
Vdc

in which non-trivial stable

periodic solutions can be obtained for high-order paramet-
ric resonance with λ � 3 in the absence of damping, where

Q =
ε0SV 2

dc

2d3
0q

.

one is that the excitation frequency should be sufficiently
close to a multiple (�3) of one of the natural frequencies
of the system. In the presence of a sufficiently large damp-
ing, high-order subharmonic parametric resonance could
occur only when the disturbances are large enough, to of-
fer sufficient energy to drive the oscillator system to one
steady-state periodic state which is at a finite distance
from the equilibrium position.

Finally, it should be stated that the existence of sta-
ble high-order subharmonic parametric resonance also de-
pends on the loading parameter Q and the excitation pa-
rameter Vac/Vdc. The domain of Q and Vac/Vdc in which
non-trivial stable steady-state solutions exist for high-
order parametric resonance with λ � 3, in the absence
of any damping, is shown in the shaded area in Figure 7.
For example, when Vac/Vdc = 0.1, the loading parameter
Q must be less than 0.248, in order to obtain the sta-
ble high-order parametric resonance with λ � 3. When
Vac/Vdc is 0, on the other hand, the problem becomes a
static one and the system will become unstable when the
loading parameter Q is more than 1/4, consistent with
the general results obtained in [29,30] for a large array of
coupled springs.

It should be stated here that the results obtained
here are applicable not only to coupled microbeams, but
also to coupled nanobeams [5,7,8]. For instance, it has
been well established that attractive van der Waals inter-
action between parallel carbon nanotubes often become
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the single dominant force in their mechanical deforma-
tion, and mechanical behavior of carbon nanotubes, as
the most promising building blocks of future NEMS (na-
noelectromechanical systems), can be well described by
elastic beam models [36–40].

5 Conclusions

Parametric resonance of comb-drive microcantilevers is
studied based on a simplified model of nonlinearly coupled
micromechanical oscillators. Different than most of previ-
ous related works, the present study focuses on the effects
of periodically varying nonlinear coupling on paramet-
ric resonance, with a particular interest in the existence
of high-order subharmonic parametric resonance. Indeed,
our results show that the periodically varying nonlin-
ear coupling leads to the occurrence of high-order sub-
harmonic parametric resonance when the excitation fre-
quency is equal or close to a multiple (say 3, 4, 8, or more)
of one of the natural frequencies of the oscillator system.
These results distinguish the present analysis from most
previous related works based on a linearized coupling, and
are well consistent with a few earlier theoretical and exper-
imental works conducted for some specific forms of non-
linear coupling. Also, the effect of a linear damping on
parametric resonance is investigated, and a critical viscous
coefficient is defined as one of the conditions for the oc-
currence of parametric resonance. It is believed that the
results obtained here offer new and interesting insights
into the ongoing research on nonlinear dynamics of cou-
pled microbeams or nanobeams in MEMS or NEMS.

Financial support of the Natural Science and Engineering Re-
search Council (NSERC) of Canada is gratefully acknowledged.

Appendix A

Let us use the method of [34] to analyze stability of steady-
state solutions for the middle oscillator coupled with two
fixed ones described by (5). If the nonlinear coupling terms
1/(1 − x1)2 and 1/(1 + x1)2 are expanded into a Taylor
series up to the 7th power, (5) becomes

d2x1

dτ2
+

c

mω0

dx1

dτ
+ x1

−Q(4x1 + 8x3
1 + 12x5

1 + 16x7
1)

×
[
1 + 2

Vac

Vdc
cos

(
Ω

ω0
τ

)
+

(
Vac

Vdc

)2

cos2
(
Ω

ω0
τ

)]
= 0.

(A.1)

Consider a subharmonic solution of order 1/λ with the
form

x1(τ) = Am(τ) cos[
Ω

λω0
τ − ψ(τ)] ≡ Am(τ) cos[θ(τ)]

(A.2)

with condition [34]

Ȧm cos θ +Amψ̇ sin θ = 0 (A.3)

to ensure ẋ1(τ) = −Am
Ω

λω0
sin θ. Substituting (A-2) into

(A-1), we obtain

− Ȧm sin θ +Amψ̇ cos θ −Amω cos θ − c

mω0
Am sin θ

+
Am cos θ

ω
− Q

ω
f(Am cos θ, τ) = 0 (A.4)

where ω = Ω
λω0

, and

f(Am cos θ, τ) = [4Am cos θ + 8(Am)3 cos3 θ

+ 12(Am)5 cos5 θ + 16(Am)7 cos7 θ]

×
[
1 + 2

Vac

Vdc
cos

(
Ω

ω0
τ

)
+

(
Vac

Vdc

)2

cos2
(
Ω

ω0
τ

)]
.

Multiplying (A-3) by cos θ and (A-4) by sin θ, and sub-
tracting, we obtain

Ȧm +Amω sin θ cos θ +
c

mω0
Am sin2 θ

− Am sin θ cos θ
ω

+
Q

ω
f sin θ = 0. (A.5)

Multiplying (A-4) by sin θ and (A-5) by cos θ, and adding,
we obtain

Amψ̇ −Amω cos2 θ − c

mω0
Am sin θ cos θ

+
Am cos2 θ

ω
− Q

ω
f cos θ = 0 (A.6)

with the slowly varying parameter technique [32,34],
Am(τ) and ψ(τ) are considered constant over one cycle.
Thus, integrating (A-5) and (A-6) with respect to θ from
0 to 2π, we obtain

Ȧm +
c

2mω0
Am +

Q

2πω

∫ 2π

0

f sin θdθ = 0 (A.7)

Amψ̇ − Amω

2
+
Am

2ω
− Q

2πω

∫ 2π

0

f cos θdθ = 0. (A.8)

Let Ȧm = 0 and ψ̇ = 0, we obtain steady-state solu-
tions of specific order λ. These steady-state solutions are
exactly same as those obtained with the harmonic bal-
ance method with Am =

√
a2
1 + b21 and ψ = arctg(b1/a1).

Based on (A-7) and (A-8), we can analyze the stability of
these steady-state solutions. For example, when λ = 8 and
c = 0 (without damping), we can obtain the steady-state
solutions defined by the following equations

sin(8ψ) = 0 (A.9)
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− ω

2
+

1
2ω

− 2
Q

ω

(
1 + 0.5

V 2
ac

V 2
dc

)
− 3

Q

ω

(
1 + 0.5

V 2
ac

V 2
dc

)
(Am)2

−3.75
Q

ω

(
1+0.5

V 2
ac

V 2
dc

)
(Am)4−4.375

Q

ω

(
1+0.5

V 2
ac

V 2
dc

)
(Am)6

− 0.125
Q

ω

Vac

Vdc
cos(8ψ)(Am)6 = 0. (A.10)

Stability of a steady-state solution, defined by (A-9) and
(A-10) with the specific coefficients Q, Vac/Vdc and Ω

ω0

(ω = Ω
8ω0

), can be studied as follows. Let us define

Am = A0
m + ε, ψ = ψ0 + η (A.11)

whereA0
m and ψ0 are the solution of (A-9) and (A-10), and

ε and η are infinitesimal disturbance in the neighborhood
of (A0

m, ψ0) in the Am − ψ phase plane. For example,
because A0

m and ψ0 satisfy (A-9) and (A-10), substituting
(A-11) into (A-7) and (A-8) with λ = 8 and c = 0 and
retaining only the first power of ε and η, we obtain

ε̇ =
Q

ω

Vac

Vdc
(A0

m)7 cos(8ψ0)η (A.12)

A0
mη̇ + ε

[
− ω

2
+

1
2ω

− 2
Q

ω

(
1 + 0.5

V 2
ac

V 2
dc

)

− 9
Q

ω

(
1 + 0.5

V 2
ac

V 2
dc

)
(A0

m)2−18.75
Q

ω

(
1 + 0.5

V 2
ac

V 2
dc

)
(A0

m)4

−30.625
Q

ω

(
1+0.5

V 2
ac

V 2
dc

)
(A0

m)6−7
8
Q

ω

Vac

Vdc
cos(8ψ0)(A0

m)6
]
=0.

(A.13)

Substituting (A-12) into (A-13), we obtain

η̈ + g(A0
m, ψ

0)η = 0 (A.14)

where

g(A0
m, ψ

0) =
Q

ω

Vac

Vdc
(A0

m)6 cos(8ψ0)
[
− ω

2
+

1
2ω

− 2
Q

ω

(
1 + 0.5

V 2
ac

V 2
dc

)
− 9

Q

ω

(
1 + 0.5

V 2
ac

V 2
dc

)
(A0

m)2

− 18.75
Q

ω

(
1 + 0.5

V 2
ac

V 2
dc

)
(A0

m)4

− 30.625
Q

ω

(
1 + 0.5

V 2
ac

V 2
dc

)
(A0

m)6

− 7
8
Q

ω

Vac

Vdc
cos(8ψ0)(A0

m)6
]
. (A.15)

Thus the steady-state solutions with g(A0
m, ψ

0) > 0 are
stable, while those with g(A0

m, ψ
0) < 0 are unstable. For

large disturbances, we can use equations (A-7) and (A-8)

to plot the trajectories in the Am − ψ phase plane to an-
alyze the nature of the point (A0

m, ψ
0). Our results show

that for λ = 8 and c = 0, the solutions with cos(8ψ0) = −1
are stable, while the solutions with cos(8ψ0) = 1 are un-
stable. Stability of the steady-state solutions with λ = 0.5,
1, 2, 3, 4 can be analyzed in a similar way.
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